Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ambio ; 52(11): 1697-1715, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37679659

RESUMEN

We present regionally aggregated emissions of greenhouse gases (GHG) from five land cover categories in Finland: artificial surfaces, arable land, forest, waterbodies, and wetlands. Carbon (C) sequestration to managed forests and unmanaged wetlands was also assessed. Models FRES and ALas were applied for emissions (CO2, CH4, N2O) from artificial surfaces and agriculture, and PREBAS for forest growth and C balance. Empirical emission coefficients were used to estimate emissions from drained forested peatland (CH4, N2O), cropland (CO2), waterbodies (CH4, CO2), peat production sites and undrained mires (CH4, CO2, N2O). We calculated gross emissions of 147.2 ± 6.8 TgCO2eq yr-1 for 18 administrative units covering mainland Finland, using data representative of the period 2017-2025. Emissions from energy production, industrial processes, road traffic and other sources in artificial surfaces amounted to 45.7 ± 2.0 TgCO2eq yr-1. The loss of C in forest harvesting was the largest emission source in the LULUCF sector, in total 59.8 ± 3.3 TgCO2eq yr-1. Emissions from domestic livestock production, field cultivation and organic soils added up to 12.2 ± 3.5 TgCO2eq yr-1 from arable land. Rivers and lakes (13.4 ± 1.9 TgCO2eq yr-1) as well as undrained mires and peat production sites (14.7 ± 1.8 TgCO2eq yr-1) increased the total GHG fluxes. The C sequestration from the atmosphere was 93.2 ± 13.7 TgCO2eq yr-1. with the main sink in forest on mineral soil (79.9 ± 12.2 TgCO2eq yr-1). All sinks compensated 63% of total emissions and thus the net emissions were 53.9 ± 15.3 TgCO2eq yr-1, or a net GHG flux per capita of 9.8 MgCO2eq yr-1.

2.
Ambio ; 52(11): 1757-1776, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37561360

RESUMEN

The EU aims at reaching carbon neutrality by 2050 and Finland by 2035. We integrated results of three spatially distributed model systems (FRES, PREBAS, Zonation) to evaluate the potential to reach this goal at both national and regional scale in Finland, by simultaneously considering protection targets of the EU biodiversity (BD) strategy. Modelling of both anthropogenic emissions and forestry measures were carried out, and forested areas important for BD protection were identified based on spatial prioritization. We used scenarios until 2050 based on mitigation measures of the national climate and energy strategy, forestry policies and predicted climate change, and evaluated how implementation of these scenarios would affect greenhouse gas fluxes, carbon storages, and the possibility to reach the carbon neutrality target. Potential new forested areas for BD protection according to the EU 10% protection target provided a significant carbon storage (426-452 TgC) and sequestration potential (- 12 to - 17.5 TgCO2eq a-1) by 2050, indicating complementarity of emission mitigation and conservation measures. The results of the study can be utilized for integrating climate and BD policies, accounting of ecosystem services for climate regulation, and delimitation of areas for conservation.

3.
Sci Total Environ ; 781: 146668, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33794457

RESUMEN

Climate change mitigation is a global response that requires actions at the local level. Quantifying local sources and sinks of greenhouse gases (GHG) facilitate evaluating mitigation options. We present an approach to collate spatially explicit estimated fluxes of GHGs (carbon dioxide, methane and nitrous oxide) for main land use sectors in the landscape, to aggregate, and to calculate the net emissions of an entire region. Our procedure was developed and tested in a large river basin in Finland, providing information from intensively studied eLTER research sites. To evaluate the full GHG balance, fluxes from natural ecosystems (lakes, rivers, and undrained mires) were included together with fluxes from anthropogenic activities, agriculture and forestry. We quantified the fluxes based on calculations with an anthropogenic emissions model (FRES) and a forest growth and carbon balance model (PREBAS), as well as on emission coefficients from the literature regarding emissions from lakes, rivers, undrained mires, peat extraction sites and cropland. Spatial data sources included CORINE land use data, soil map, lake and river shorelines, national forest inventory data, and statistical data on anthropogenic activities. Emission uncertainties were evaluated with Monte Carlo simulations. Artificial surfaces were the most emission intensive land-cover class. Lakes and rivers were about as emission intensive as arable land. Forests were the dominant land cover in the region (66%), and the C sink of the forests decreased the total emissions of the region by 72%. The region's net emissions amounted to 4.37 ± 1.43 Tg CO2-eq yr-1, corresponding to a net emission intensity 0.16 Gg CO2-eq km-2 yr-1, and estimated per capita net emissions of 5.6 Mg CO2-eq yr-1. Our landscape approach opens opportunities to examine the sensitivities of important GHG fluxes to changes in land use and climate, management actions, and mitigation of anthropogenic emissions.

5.
Artículo en Inglés | MEDLINE | ID: mdl-31416284

RESUMEN

Exposure to fine particles in ambient air has been estimated to be one of the leading environmental health risks in Finland. Residential wood combustion is the largest domestic source of fine particles, and there is increasing political interest in finding feasible measures to reduce those emissions. In this paper, we present the PM2.5 emissions from residential wood combustion in Finland, as well as the resulting concentrations. We used population-weighed concentrations in a 250 x 250 m grid as population exposure estimates, with which we calculated the disease burden of the emissions. Compared to a projected baseline scenario, we studied the effect of chosen reduction measures in several abatement scenarios. In 2015, the resulting annual average concentrations were between 0.5 and 2 µg/m3 in the proximity of most cities, and disease burden attributable to residential wood combustion was estimated to be 3400 disability-adjusted life years (DALY) and 200 deaths. Disease burden decreased by 8% in the 2030 baseline scenario and by an additional 63% in the maximum feasible reduction scenario. Informational campaigns and improvement of the sauna stove stock were assessed to be the most feasible abatement measures to be implemented in national air quality policies.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Material Particulado/efectos adversos , Material Particulado/análisis , Madera/efectos adversos , Madera/química , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Finlandia , Humanos
6.
Artículo en Inglés | MEDLINE | ID: mdl-29649153

RESUMEN

Air pollution has been estimated to be one of the leading environmental health risks in Finland. National health impact estimates existing to date have focused on particles (PM) and ozone (O3). In this work, we quantify the impacts of particles, ozone, and nitrogen dioxide (NO2) in 2015, and analyze the related uncertainties. The exposures were estimated with a high spatial resolution chemical transport model, and adjusted to observed concentrations. We calculated the health impacts according to Word Health Organization (WHO) working group recommendations. According to our results, ambient air pollution caused a burden of 34,800 disability-adjusted life years (DALY). Fine particles were the main contributor (74%) to the disease burden, which is in line with the earlier studies. The attributable burden was dominated by mortality (32,900 years of life lost (YLL); 95%). Impacts differed between population age groups. The burden was clearly higher in the adult population over 30 years (98%), due to the dominant role of mortality impacts. Uncertainties due to the concentration-response functions were larger than those related to exposures.


Asunto(s)
Contaminantes Atmosféricos/economía , Contaminación del Aire/economía , Dióxido de Nitrógeno/economía , Ozono/economía , Material Particulado/economía , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/economía , Finlandia/epidemiología , Humanos , Modelos Químicos , Dióxido de Nitrógeno/análisis , Ozono/análisis , Material Particulado/análisis , Años de Vida Ajustados por Calidad de Vida , Riesgo , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...